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Abstract

Accurate variant pathogenicity predictions are important in genetic studies of human diseases. Inframe insertion and deletion variants
(indels) alter protein sequence and length, but not as deleterious as frameshift indels. Inframe indel Interpretation is challenging due
to limitations in the available number of known pathogenic variants for training. Existing prediction methods largely use manually
encoded features including conservation, protein structure and function, and allele frequency to infer variant pathogenicity. Recent
advances in deep learning modeling of protein sequences and structures provide an opportunity to improve the representation of
salient features based on large numbers of protein sequences. We developed a new pathogenicity predictor for SHort Inframe iNsertion
and dEletion (SHINE). SHINE uses pretrained protein language models to construct a latent representation of an indel and its protein
context from protein sequences and multiple protein sequence alignments, and feeds the latent representation into supervised machine
learning models for pathogenicity prediction. We curated training data from ClinVar and gnomAD, and created two test datasets from
different sources. SHINE achieved better prediction performance than existing methods for both deletion and insertion variants in these
two test datasets. Our work suggests that unsupervised protein language models can provide valuable information about proteins, and
new methods based on these models can improve variant interpretation in genetic analyses.

Keywords: inframe indel, variant pathogenicity, transformer, protein language model, transfer learning

Introduction
Inframe insertion and deletion variants (indels) are abundant
but are under studied in genetic analyses. In the ∼500 000 UK
biobank whole exome sequencing dataset, median numbers of
the inframe and frameshift variants per individual were 115
and 90, respectively [1]. A recent deep mutational scan study of
DDX3X showed 49% of 625 inframe deletions caused cell depletion
[2], potentially causal for a rare disease—DDX3X syndrome
characterized by motor and language delays and autism spectrum
disorder. Although many inframe indels contribute to human
diseases [3–5], the impact of rare individual inframe indels is
usually uncertain. In ClinVar [6], 64% and 18% of ∼12 000 inframe
indels are reported as variants of uncertain significance (VUS)
and pathogenic/likely pathogenic (P/LP), compared with 12 and
86% of 53 000 frameshift indels are VUS and P/LP [7]. This issue
is due to the difficulty in determining pathogenicity of inframe
indels: there are fewer clinical cases with pathogenic inframe
indels. Accurate pathogenicity predictions for inframe indels
can facilitate return of results in genetic testing, refine variant

prioritization for downstream analyses in genetic research study
and strengthen the computational evidence used in the American
College of Medical Genetics and Genomics and Association for
Molecular Pathology guidelines.

Several computational methods were developed to predict
pathogenicity for inframe indels [8–16], but the accuracy is
limited by the availability of training data. There are only 2208
P/LP and 1599 benign/likely benign (B/LB) inframe indels with
two stars (multiple submitters with assertion criteria and no
conflicting interpretation) in ClinVar [6]. In addition, nearly all
existing computational methods use machine learning with
manually encoded predictive features, such as DNA/protein
conservation, protein structure and function, occurrence in a
repeat region, size of the indels, local amino acid composition,
distance to the nearest splice site and allele frequency. Although
these features are correlated with variant pathogenicity, they
are based on our limited understanding of how variants exert
their function. Recent advances in deep learning, particularly
protein language models [17, 18, 25], enable us to study latent
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representations for protein sequences that can potentially
capture salient information not encoded by existing methods.
This opens up an opportunity to improve the input salient
features used in protein-related bioinformatic applications.

Here we present SHINE (SHort Inframe iNsertion and dEletion),
a transfer learning model to leverage protein language models
and limited available pathogenicity data for inframe indels. The
protein language models take protein sequences or multiple pro-
tein sequence alignments (MSA), and generate latent represen-
tations capturing protein features. Previous studies have shown
the linear projections of the representations generated from the
protein language models encode information about protein sec-
ondary and tertiary structure [17]. The same group used zero-
shot and few-shot transfer of the protein language models to
predict variant effects [19]. SHINE uses the representations as
features to separate pathogenic from benign inframe indels. It
is trained on curated inframe indels from ClinVar, and short
and common indels in gnomAD; and compared with the other
computational methods on two independent test datasets. SHINE
achieved better prediction performance than existing methods for
both deletion and insertion variants in these two test datasets.
Finally, we interpreted the salient features from SHINE by compar-
ing them with known predictive protein features, such as protein
secondary structure, intrinsically disordered protein regions and
relative solvent accessibility. Our work suggests that unsupervised
protein language models can provide valuable information about
proteins, and new methods based on these models can improve
variant interpretation in genetic analyses.

Materials and methods
Data sets
We obtained P/LP and B/LB inframe indels from ClinVar [6] and
gnomAD, and excluded inframe indels that have a length greater
than three amino acids or allele frequency < 0.1% in gnomAD.
Seventy-five inframe indels are overlapped between ClinVar and
gnomAD, and only one is P/LP, suggesting it is reasonable to use
gnomAD variants as B/LB. We divided this dataset into train-
ing and validation datasets based on the number of deleted/in-
serted amino acids. Indels with one-amino-acid deletion/insertion
are used for training and the rest are for validation. The train-
ing dataset includes 1040 pathogenic and 1111 benign deletions,
and 142 pathogenic and 537 benign insertions. The validation
dataset includes 640 pathogenic and 896 benign deletions, and
272 pathogenic and 662 benign insertions. These datasets are used
to select the optimal number of features, prediction models and
parameters for the models.

To evaluate the performance, we created two independent
datasets for neurodevelopmental disorder (NDD) genes and
cancer driver genes. Overlapping indels with the training-
validation datasets were removed from the test datasets. The
two test datasets are from different sources than ClinVar, which
avoids inflated performance when testing on data from the
same source. Besides, the two datasets were not used to train
any of the previous prediction models for indels, so are good
benchmarks for method comparison. Six hundred and eighty-
six NDD risk genes were collected based on previous studies [20,
21]. De novo inframe indels in the 686 NDD genes in two NDD
cohorts were used as proxies of pathogenic variants, and short
inframe indels with at most three-amino-acid deletion/insertion
in the UK biobank (200 000 exomes) were considered benign. One
NDD cohort includes 16 877 trios in Simons Powering Autism
Research (SPARK; [20, 22, 23]) and the other includes 13 058 trios

Figure 1. Architecture of the SHINE.

with developmental disorders [21]. This test dataset includes 146
pathogenic and 2808 benign deletions, and 35 pathogenic and
1504 benign insertions. The second test dataset is composed of
inframe indels discovered in >1000 cancer mutational hotspots
[24]. We identified 307 deletions and 119 insertions in 36 genes as
proxies of pathogenic variants. We extracted short inframe indels
including 132 deletions and 54 insertions from the UK biobank in
the same 36 genes as benign. To be noted, the variants from both
cases (NDD cohorts and cancer mutational hotspots) and controls
(UK biobank) are mixtures of pathogenic and benign variants, but
the de novo/somatic variants in NDD risk genes/cancer mutational
hotspots identified in cases are much more likely to be pathogenic
compared with germline variants in controls. We used the case/-
control status as a proxy of pathogenic/benign labels in the test.

Model architecture
SHINE uses a transfer learning architecture (Figure 1), leverag-
ing pretrained protein language models and limited available
pathogenicity labels for inframe indels. We used two protein
language models: ESM-1b [17] and MSA transformers [25]. The
two transformers aim to learn biological properties from pro-
tein sequences or MSAs with unsupervised learning or without
prior knowledge. The ESM-1b transformer was trained on 250
million protein sequences [17]. The MSA transformer was trained
on 26 million MSAs [25]. Both generated latent representations
containing information about biological properties of input pro-
teins. We elaborate on how we selected proper transformers,
ways to handle multiple-amino-acid indels, input dimensions
(number of features), prediction models and their parameters.
As the latent representations from the transformers are high
dimensional and correlated, we first performed feature reduction
using principal components analysis (PCA) on the 1024 and 768
latent representations from the last layer of the ESM-1b and the
MSA transformer. The optimal number of remaining principal
components (nPCs) was selected using linear regression as a base
predictor. The transformed PCs were fed as salient features to a
supervised machine learning model. We further tested different
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supervised machine learning models including random forest,
support vector machine, gradient boosting and elastic net. The
preselected optimal nPCs were used. Their optimal parameters
were selected based on 5-fold cross validation on the training
dataset using regression coefficients as optimized scores. Finally,
we repeated the selection of the nPCs for each model given the
tuned parameters. The above process was done on our training-
validation datasets using sklearn [26] for deletions and inser-
tions separately. For multiple-amino-acid indels, we calculated
the predictive scores for each amino acid and then tested the
maximum, mean and sum of the scores as the final predictive
score.

Input features
ESM-1b and MSA transformers take protein primary sequences
and MSAs as inputs. Limited by the pretrained transformers, we
divided long protein sequences into equal-size pieces fewer than
1023 amino acids. We downloaded MSA data from Ensembl Com-
para using REST API (https://rest.ensembl.org/documentation/
info/genetree). The median and mean MSA depth is 211 and
320.2, respectively. As many proteins included in the MSA are not
similar enough to the human proteins of interest, we trimmed
the phylogenetic trees to remove the less similar proteins and
included a maximum of 300 proteins per MSA. This also speeds
up the pretraining process to generate latent representations.
Supplementary Figure S1 shows the distribution of MSA depth
before and after the trim. The median and mean MSA depth after
the trim is 199 and 184.3, respectively. For deletions, we fed wild-
type protein sequences or MSAs to the pretrained transformers,
and extracted latent representations of amino acids that were
deleted. For insertions, wild-type MSAs were used for the MSA
transformer. Extracted were latent representations of the position
(amino acid or gap) followed by the amino acid where the insertion
occurs. Mutated protein sequences with inserted amino acid(s)
were inputted for ESM-1b transformer and latent representations
of the inserted amino acid(s) were used as features. The dimen-
sions of the latent representations from the last layer of the two
transformers are fixed as 1024 and 768 for ESM-1b and MSA
transformers, respectively.

Measures of predictive quality
Quantitative predictive scores were evaluated using the receiver
operating characteristic (ROC) curve and the difference of two
score distributions from cases and controls. R package ‘pROC’ was
used to estimate area under the ROC curve (AUC) and the level of
significant difference between two ROC curves. AUC is used as the
quality measure to select the optimal number of features, models
and the way to handle multiple-amino-acid indels. The differ-
ence between the two distributions from cases and controls was
measured using Wilcoxon rank sum test in R. Smaller P-values
indicate better separation of benign and pathogenic variants.
The binary predictions were assessed using balanced accuracy,
sensitivity/recall and specificity.

Existing pathogenicity predictors for inframe
indels
We selected all available methods that predict pathogenicity for
inframe indels and provide a web server for convenient access
to the end users. They included VEST-indel [12], CAPICE [16] and
CADD [15]. VEST-indel applied random forest included 24 features.
CADD used L2 regularized logistic regression with more than 60
features. CAPICE used gradient boosting on decision trees with the
same set of features as CADD. The default thresholds for SHINE,

CAPICE, VEST-indel and CADD are 0, 0.02, 0.8 and 20, respectively.
Inframe indels with predictive scores larger than the threshold are
considered as pathogenic.

Results
SHINE model
Using transfer learning, SHINE takes advantage of the pretrained
protein language models to maximize the use of limited available
pathogenicity labels for inframe indels. We first tested the per-
formance of the two pretrained models: ESM-1b and MSA trans-
formers. PCA was applied to their latent representations sepa-
rately and then to combined representations to generate different
sizes of salient features (nPCs). Linear regression projecting the
salient features to pathogenicity label, was trained on the training
dataset and tested on the validation dataset. We picked the high-
est (worst) predictive score for multiple-amino-acid insertion-
s/deletions as the final predictive score. Supplementary Figure S2
shows the AUC values for the MSA transformer are higher than
those for the ESM-1b transformer. Combining the representations
from both models does not improve predictions compared with
the MSA transformer only. The two transformers capture dif-
ferent properties about proteins: representations from the ESM-
1b transformer consider amino acid sequence patterns and rep-
resentations from the MSA transformer consider cross-species
conservation. Therefore, we used both transformers in SHINE.

The following analyses were performed using representations
from both ESM-1b and MSA transformers. We evaluated different
ways (maximum, mean and sum) to handle multiple-amino-
acid indels. Supplementary Figure S3 shows maximum score is
the best. Although intuitively, long indels are more likely to be
pathogenic than short indels, sum of the individual scores for each
amino acid does not work. Thus, SHINE model uses maximum
score for multiple-amino-acid indels.

PCA transformed the combined latent representations from the
two transformers into low dimensional features (PCs). Figure 2
shows the scatterplot of the first two PCs for pathogenic and
benign variants on the training dataset. PC1 and PC2 correlated
with pathogenicity for deletions with correlation coefficients of
−0.506 and −0.436. The correlation coefficients for insertions
were 0.365 and −0.455 for PC1 and PC2, respectively. The first
10 PCs explained 38.7 and 42.6% of the variance for deletion
and insertion representations, respectively. Scree plots are in
Supplementary Figure S4. Fifty and 10 PCs were chosen for
deletions and insertions as they give the highest AUC values based
on the linear regression model (Supplementary Figure S3).

We tested different supervised machine learning models and
tuned their parameters given the same nPCs optimized in the last
step as input. At the end, each of the tuned models was used
to select their own optimal nPCs based on the best AUC values.
Elastic Nets were the best models as they provided consistent
good performance, were not sensitive to the number of input PCs
and were not likely to overfit on the training dataset (Figure 3).
Parameters alpha and l1_ratio of the Elastic Nets were 1.0 and 0.1
for both deletions and insertions. The Elastic Net for the deletions
included 100 PCs, and 32 of them had non-zero coefficients. The
Elastic Net for the insertions included 30 PCs, and 14 of them had
non-zero coefficients.

Evaluation on the NDD test dataset
Instead of splitting data for training and test from the same
source, we used independent test datasets to avoid the inflated
performance on data from the same source. We compared SHINE
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Figure 2. Scatterplot of the first two principal components for pathogenic and benign inframe indels.

Figure 3. Area under ROC curve for a set of machine learning models with varying numbers of principal components as input features.

with three methods including VEST-indel [12], CAPICE [16] and
CADD [15] by classifying indels in the 686 NDD risk genes from
NDD cases and UK biobank controls. We note the indels from both
cases and controls are mixtures of pathogenic and benign vari-
ants, but the de novo variants in NDD risk genes identified in cases
are more likely pathogenic compared with germline variants in
the general population. Thus, we could use the case/control sta-
tus as a proxy of pathogenic/benign labels in the test. We first
examined the predictive power of the autism (SPARK) and NDD
cohorts separately. Supplementary Figure S5 shows SHINE scores
have distinct modes for cases versus controls for both cohorts,
so we combine autism and NDD cases for the following anal-
ysis. Compared with the other computational methods, SHINE
has the lowest P-value (Supplementary Figure S6), i.e. separates
pathogenic from benign the best.

From the ROC curves, Figure 4 shows that SHINE has the high-
est AUC values of 0.846 and 0.819, improves over the second-best
VEST-indel by 0.04 (relative improvement of 4.4%) and 0.05 (rel-
ative improvement of 6.6%) for deletions and insertions, respec-
tively. The improvement over all three methods is significant
(P-value<0.05) for deletion. SHINE and VEST-indel are insignifi-
cant for insertion predictions (Supplementary Table S1). The sen-
sitivity rises quickly at a low false positive rate for SHINE. It
implies SHINE scores correlate with likelihood of pathogenicity.
We evaluated their binary predictions using their default thresh-
olds. Supplementary Table S2 shows the evaluation for the binary
prediction including balanced accuracy, sensitivity and specificity.
SHINE provides balanced accuracy scores of 0.777 and 0.699 for
deletions and insertions. All the methods over-predict. CAPICE
predicts the most, so has the highest sensitivity. SHINE, VEST-indel

and CADD offer the best specificity. We note SHINE provides much
higher specificity compared with sensitivity for insertion. This is
probably due to more benign variants than pathogenic variants
in insertion training dataset. Overall, SHINE and VEST-indel give
good balanced accuracy balancing sensitivity and specificity. Our
analysis suggests SHINE can distinguish pathogenic from benign
indels well. For users interested in high-precision predictions, high
SHINE scores provide a good solution (high sensitivity given a low
false positive rate in Figure 4).

None of the computational methods used allele frequency in
their predictive models, so we tested their sensitivity to allele
frequency. We repeated the analysis using a subset of benign
variants with gnomAD allele frequency > 10−4 (146 deletions and
35 insertions in cases, and 601 deletions and 339 insertions in
controls). All the computational methods perform better on this
dataset with more restricted benign indels. SHINE still has the
highest AUC value (Supplementary Table S1).

One-amino-acid inframe indels are most abundant among
indels in the population and are also the hardest to predict.
We extracted indels from our NDD test dataset with only one
deleted or inserted amino acid. This subset includes 118 deletions
and 18 insertions in cases, and 2207 deletions and 747 inser-
tions in controls. We reported the AUC values on this subset in
Supplementary Table S1. All methods provide similar AUC values
compared with that from the full NDD dataset.

Evaluation on the cancer mutational hotspot test
dataset
We compared SHINE with the other three methods on indels in
the other independent test dataset: cancer mutational hotspots
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Figure 4. Evaluation of predictive scores using receiver operating characteristic curves for four prediction methods in NDD cases and UK biobank
controls.

Figure 5. Evaluation of predictive scores using receiver operating characteristic curves for four prediction methods in cancer mutational hotspot cases
and UK biobank controls.

and UK biobank. Supplementary Figure S7 shows SHINE has the
lowest P-value to separate distributions of predictive scores for
cases and controls. VEST-indel provides the similar performance
for insertions, but its performance on deletions is inferior. AUC
results are consistent (Figure 5). SHINE with an AUC value of
0.877, is significantly better than VEST-indel and CADD for dele-
tions (P-value < 0.05). It improves over CAPICE by 0.03 (relatively
improvement of 3.7%), but the difference is not significant. On the
insertion dataset, SHINE with the highest AUC values of 0.946 is
insignificantly better than VEST-indel with AUC value of 0.934.
Both outperform the other two methods significantly by over
0.17 (22.2%) in AUC values. All in all, our method is consistently
the best on the two independent test datasets, despite different
disease types.

Interpretation of the input features
Previous studies identified a few top performing features for
indel pathogenicity prediction, such as intrinsically disordered
protein region, protein secondary structure and solvent accessible
surface area [9]. We investigated the correlation between the input
features of SHINE—principal components and the three protein-
structure features. Supplementary Figure S8 shows the PC1 is
significantly correlated with protein secondary structure (coil),
intrinsically disordered residues and relative solvent accessibility.

Pathogenic variants are more likely to be seen in structured
protein regions and embedded in the core of proteins. Our obser-
vations are consistent with the previous studies [9]. Even though
we did not encode protein features as previous methods such as
protein secondary structure, these features are likely captured in
the latent representations generated from the pretrained trans-
formers. Moreover, the latent representations have potential to
carry information that we have not discovered. More efforts are
still needed to interpret the protein structure and function to
better understand how genetic variations affect the proteins.

Discussion
Accurate pathogenicity predictions for inframe indels are
important. Available computational approaches to address this
question are insufficient, primarily due to the limitations of
available pathogenicity labels for training. We take advantage
of the protein language models trained using millions of protein
sequences to learn protein statistics/features in an unsupervised
fashion. We for the first time transfer the knowledge about
proteins to pathogenicity prediction for inframe indels. Evaluating
on two independent test datasets, our method is consistently
better than the current computational methods. SHINE scores
provide a pathogenicity likelihood, which can facilitate selection
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of top pathogenic inframe indels in research and clinical
interpretation of variant pathogenicity.

Most of the current computational studies use pathogenic
indels from ClinVar and Human Gene Mutation Database, and
common and low-frequency indels from population datasets as
benign. The issue is that pathogenic indels have been identified
only in a few hundred known disease genes, whereas benign
indels are largely extracted from unconstrained genes. The
two sets of genes do not overlap much. Our training-validation
datasets include pathogenic indels in 917 genes and benign indels
in 1566 genes, and only 206 genes contributing both pathogenic
and benign indels. Previous methods built on similar datasets
tended to select gene-level features, which separate disease genes
from the rest. These methods lack the power to distinguish
pathogenic from benign indels when testing the same gene.
Our test datasets are designed to eliminate the effect from the
ascertainment bias. We included variants in the same set of
genes from different sources. Neither the NDD nor the cancer
mutational hotspot dataset was used to train any of the previous
methods. So, our test datasets are good benchmarks to test the
predictive power for variant interpretation and compare across
different approaches.

We note the labels in our test datasets are not true pathogenic
or benign classifications, instead case/control status for the origin
of the variants. Not all variants found in cases are pathogenic; not
all variants found in controls are benign. In our sensitivity analysis
removing ultra-rare variants from controls, all methods perform
better. It suggests it is easier to separate pathogenic variants from
common benign variants compared with rare benign variants. We
also acknowledge a small portion of rare variants in controls could
be pathogenic, which affects the predictive performance of the
computational methods.

Protein language models generate protein latent repre-
sentations from the protein sequences or multiple sequence
alignments. Based on recent publications about protein language
models and their applications in protein-structure prediction,
these latent representations should capture information related
to manually calibrated features such as sequence conservation,
amino acid properties, and protein-structure context. In addition,
the language model may capture non-linear interaction of the
features and potentially new information not well represented in
those features, as it has much better performance for a range of
prediction tasks than conventional methods based on manually
calibrated features. We acknowledge interpretation of deep
learning models is a challenging problem in general. However,
we found the PCs (combinations of the protein representations)
correlate with the previously discovered predictive features and
provide better predictive power. Moreover, these representations
are protein signatures learnt from unsupervised approaches and
not biased to any specific task, so can be used for many other
bioinformatic applications.

Conclusions
SHINE is the first protein language model-based method to predict
pathogenicity of inframe indels. The protein language models
generate unbiased protein statistics in an unsupervised fashion.
Future research should consider expanding the variant types
for pathogenicity prediction using similar approaches. Bench-
mark datasets from functional data will be highly appreciated
as deep mutational scan data are becoming available for inframe
indels.

Key Points

• We present SHINE, a transfer learning-based method
to take advantage of pretrained representation about
protein sequence and homologous alignment. The pre-
training process is based on unsupervised deep learning
protein language models, trained on millions of protein
sequences. This approach allows us to overcome the
limitation about the small number of known pathogenic
inframe indels, a bottleneck in conventional supervised
machine learning methods.

• We created two benchmark test datasets, which are
independent from commonly used ClinVar variants. The
performance evaluation on these two datasets is robust
and fair.

• SHINE achieves better predictive performance than
existing methods on the two test datasets. SHINE scores
provide a pathogenicity likelihood, which can facilitate
selection of top pathogenic inframe indels in research
and clinical interpretation of variant pathogenicity.
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